Karl Jürgen Hepke
Bonsor, George (Jorge)
George (Jorge) Edward Bonsor (1855-1930) was born in France to British parents but spent most of his life working as an artist and archaeologist in Spain. In the 1920s Bonsor and Adolph Schulten searched in The Doñana Marshes for Tartessos. An account of Bonsor’s work is available online(a), in Spanish, but it translates quite well with Google. Despite comments recently attributed to Professor Richard Freund, [0879.71] I have no evidence that Bonsor equated Tartessos with Atlantis as Schulten did.
A number of his books, in Spanish, are available online(c).
Karl Juergen Hepke has written an extensive paper (in English) on the work of Bonsor(b).
(a) https://www.juntadeandalucia.es/educacion/vscripts/wbi/w/rec/3121.pdf
(b) search_for_tartessos.E (archive.org)*
Hepke, Karl Jürgen
Karl Jürgen Hepke was born in 1933 and is a graduate engineer. For over twenty years he has been researching early history. He is the author, in German, of The History of Atlantis[381] with an English translation online(f).
Hepke maintains two websites(a)(b) that have a good portion of their content in English and cover a range of Atlantis-related subjects. However, in an overview(d) of his work, he moves into the area of UFOs and alien intervention, which for me is a ‘turn off’’. Hepke does not consider these extraterrestrials to have been ‘gods’ but were culture bearers(g)!
Hepke follows the opinion of Lewis Spence who was probably the earliest to postulate the idea of ‘two Atlantises‘. The first was located in the North Atlantic and was flooded by rising sea levels following an impact with a comet or asteroid. He believes that this impact was responsible for some axial displacement of the earth. The second was the Atlantis described by Plato and in the opinion of Hepke was centred in Tartessos, the Tarshish of the Bible, in Andalusia, Spain. He specifies the present Puerto de Santa Maria(e), immediately north of Cadiz, as the site of Tarshish, where recent excavations, have revealed Phoenician remains and a very ancient racecourse.
Hepke agrees with the idea that Plato’s 9,000 ‘years’ were actually lunar cycles and should be accepted as 692 solar years, which when added to the date of Solon’s visit to Sais would give a date of 1192 BC for the demise of Atlantis. Hepke points out that current understanding indicates a date of 1250 BC for the catastrophic impact that led to the destruction of Atlantis and that 1190 BC was the date of the first battle between the Egyptians and the Sea Peoples. However, any slight date discrepancies could be explained by the fact that the 9,000 ‘years’ referred to are highly unlikely to have been intended as exact. In the same way that people of today will casually speak of an event in the 18th century as having occurred ‘a couple of hundred’ years ago, with an accepted accuracy that could be 50 years out.
What is strange is that if Hepke is equating the Sea Peoples with the Atlanteans, this conflicts with Plato’s story, which suggests that the Egyptians did not have to fight the Atlanteans, who were engaged in a war with the Athenians diverting their forces away from Egypt.
Hepke delivered a paper(c) to the 2011 Atlantis Conference on Santorini. He outlined his Atlantis theory locating it on the plain of the River Guadalete which runs into the Bay of Cádiz near Puerto de Santa Maria.
>Hepke’s Atlantis location theory has received support from Hans Joachim Hess in a paper on the Atlantisforschung.de website.<
Hepke has also added some links to video clips to his websites.
(a) Tolos Homepage (archive.org)
(b) Tolos Homepage (archive.org)
(e) See (c)
(f) The History of Atlantis (archive.org)
(g) Jürgen Hepke – Atlantisforschung.de
(h) Alle Wege führen nach Atlantis – Atlantisforschung.de *
Carteia
Carteia was a Phoenician port situated in South-West Spain just west of the Rock of Gibraltar (36.2N, 5.4W). Today there is little to be seen as the harbour silted up and was abandoned. It has been suggested that it may have derived its name from the Phoenician god Melqart. Some researchers such as Karl Jürgen Hepke have linked it with Tartessos/Atlantis, following the same incorrect identification made by Pliny (Natural History 3.7) in the 1st century AD.
Asteroids *
Asteroids, Comets and Meteoroids are all relatively small objects that inhabit our Solar System. When any of them have orbits that intersect with that of the Earth they are known as Near Earth Objects or NEOs. Asteroids (a word coined by William Herschel [1738-1822]) used to be known as minor planets, while meteoroids is the name applied to asteroids that are less than 50 metres in diameter, although some use 10 metres as the classification threshold.
The largest known meteorite is the Hoba Meteorite near Groodfontein, Namibia, which weighs over 60 tons and is calculated to have landed less than 80,000 years ago(ax) and is composed of about 84% iron and 16% nickel, with traces of cobalt(ay). Before man learned how to smelt iron the only source of the metal was from meteorites that were used to craft ornaments or weapons, such as the beautifully crafted knife buried with Tutankhamun. It is also reported that meteoric iron was used to fashion an arrowhead from a meteor that landed 3,500 years ago(az).
Meteorites have had a history of being considered divine in origin, leading to different levels of veneration in various cultures(v). In the 2nd century, Clement of Alexandria is said to have concluded that “the worship of such stones to have been the first, and earliest idolatry, in the world.”
What is probably the first recorded death from a meteorite strike took place in India in February 2016(z).
Comets, until recently, were generally thought to be composed of just dust and ice, ‘dirty snowballs’, which have orbits that periodically bring them close to the sun at which stage the interaction of the comet’s dust trail with the solar wind produces a highly visible coma or tail. The nucleus can have a diameter of a couple of kilometres.
The chemical composition of comets is now known to be varied and much more complex than previously believed. In 2015, Comet Lovejoy was ejecting the equivalent of “500 bottles of wine every second” when it was closest to the sun, in the form of ethyl alcohol(w). A close encounter with the Earth would have been interesting!
In 1883 a large comet is estimated to have come within a few hundred miles of Earth. It was photographed and some years later the image was hailed as the first image of a UFO!
In recent years comets have come to be seen as potentially more dangerous than asteroids in the event of a collision. This view was graphically demonstrated when the Levy-Shoemaker comet crashed spectacularly into Jupiter in 1994, after breaking up into as many as 21 large pieces before impacting. This comet was originally about 20 km in diameter. However, the distinction between comets and asteroids has been blurred by asteroids sometimes displaying the features of comets, such as asteroid P2013/P5, which in 2013 produced six cometary-like tails.
In 2022, a report offered evidence that major cometary or asteroidal impacts or airbursts have been more frequent than previously thought. University of Cincinnati’s Professor Kenneth Tankersley and his colleagues have listed many such events that are known to have occurred since one apparently wiped out the dinosaurs. The most disturbing fact is the number of encounters experienced within historical times, for example – “Archaeologists have found meteorites, microspherules, iridium and platinum anomalies, and burned charcoal-rich habitation surfaces at 11 archaeological sites of the Hopewell culture in three states stretching across the Ohio River Valley. While Hopewell people survived the catastrophic event, which occurred between 252 and 383 CE, it likely contributed to their cultural decline.” (as) Jason Colavito is critical of this claim “because the Hopewell did not enter a terminal decline after their proposed impact date of c. 255-300 CE but flourished for another 200 years.”(at)
In 1752, the French astronomer, Pierre-Louis Moreau de Maupertuis, expressed the view that “However dangerous might be the shock of a comet, it might be so slight, that it would only do damage at the part of the Earth where it actually struck” and with coincidental foresight added “ Perhaps we should be very surprised to find that the debris of these masses that we despised were formed of gold and diamonds” considering how Richard Firestone and his associates more recently used the existence of nanodiamonds to confirm the cometary impact of 11,000 BC over North America.
Asteroids and comets have been blamed by a number of researchers for the demise of Atlantis since the end of the 18th century. It was the Italian polymath, Giovanni Rinaldo Carli, who in 1788 declared [087] that part of a passing comet hit the Earth and was responsible for the destruction of Atlantis. A century later in his second book [022] on Atlantis, Ignatius Donnelly similarly claimed that a comet’s collision with Earth was the cause of Atlantis’ destruction(af). Comets rather than asteroids were initially blamed because of their high visibility. However, as our technology advanced and we gradually became aware of the number of large asteroids that intersect with the Earth’s orbit they replaced comets as the more likely cause of historical impacts.
For some decades, Bob Kobres has been studying the evidence for cometary encounters contained in ancient mythologies and their possible association with known events(ah) such as the creation of the Carolina Bays or the Bronze Age Collapse(ag).
The early part of the 20th century saw the eccentric William Comyns Beaumont[088][089][090]and the mysterious Hans Schindler Bellamy[091] both supporting the idea of Atlantis being destroyed by an encounter with an extraterrestrial object. The theory has been adopted by a growing number of popular modern writers such as Otto Muck[098], Egerton Sykes, Andrew Collins[072], Paul Dunbavin[099], Karl Jürgen Hepke(a), Frank Joseph explains [102.108] how a number of scholars encouraged by Muck, came forward to publicly state their belief that Atlantis had been destroyed by an extraterrestrial impact or impacts: “They included the world’s foremost authority on Halley’s Comet, Dr M.M. Kamienski, a member of the Polish Academy of Sciences; Professor N. Bonev, one of the 20th century’s leading astronomers at the University of Sofia, in Bulgaria; and Jack Hills, of the prestigious Los Alamos National Laboratory”.
In 1971, Sykes’ Atlantis magazine devoted an entire issue to the matter of impact craters around the globe(ak), a subject that he also wrote about a few years earlier(av). More up-to-date is a paper by Andrew Glikson published in August 2023. In it he notes that “Geophysical evidence suggests there is a massive, magnetized structure deep beneath Australia. Experts think it could be the remnants of the largest meteor crater on Earth.” This feature in New South Wales known as the Deniliquin structure may date to half a billion years and is “yet to be further tested by drilling, spans up to 520 kilometres in diameter. This exceeds the size of the near-300km-wide Vredefort impact structure in South Africa, which to date has been considered the world’s largest(ba).”
Emilio Spedicato of the University of Bergamo has written(b) and lectured widely on his hypothesis that the last Ice Age was started by an extraterrestrial impact over a continent and ended with a similar event over an ocean. This second impact was the cause of Atlantis’ destruction and Spedicato specifies Hispaniola as containing the location of its capital.
Spedicato is not alone in believing that impacts by large objects have been responsible for the triggering of past Ice Ages. As we have seen a large number of writers have suggested an impact with the Earth as the primary or at least the secondary cause of the destruction of Atlantis(d). These cosmic collisions have occurred throughout the history of our planet, continuing to this day. Most of the impact material is small and burns up in the atmosphere. Some low-density objects have penetrated the atmosphere but disintegrated before actually impacting, generating powerful shock waves commensurate with their size. Such an event was the well-known Tunguska(i) explosion over that area of Siberia in 1908.
Commenting on the Tunguska event Stephen E. Franklin added that “Less than five hours after the Tunguska object exploded at 7:14 AM local time in Siberia, another fireball was seen over Kagarlyk near Kyiv in what is now Ukraine (then part of the Russian Empire) at around 7:00 AM local time followed by the impact of a 1.912 kg stony meteorite.”(ad)
In 2001, Dr Luigi Forschini one of the leaders of an Italian expedition to the Tunguska region studied some of the 60,000 fallen trees and for the first time, they also had access to previously untranslated eye-witness accounts. They concluded that the object had arrived from the southeast at about 11 km per second and that an investigation of its likely orbit concluded that it was more likely that the intruder had been an asteroid rather than a comet. They speculated that it was probably not much more than ‘a pile of rubble’ that broke up completely, leaving no crater(aq).
>In 2013, Gernot Spielvogel co-authored Sonnenbomben [1582] in which it is suggested that the Tunguska event was caused by a solar plasma ‘bomb’. Elsewhere, a YouTube video reviews the Tunguska event and concludes that many of the remaining mysteries associated with can be explained if it is treated as a major electrical discharge event(bb) between the Earth and an approaching asteroid or comet.<
The most recent (April 2020) Tunguska theory is that it could have been caused by an iron asteroid partially entering and then leaving the atmosphere!(aj) The most bizarre Tunguska suggestion is that it was the result of experiments carried out by Nikola Tesla(al). Another claim is that a massive explosion of escaping underground gas was the culprit(am). July 1st, 2021 another update on Tunguska theories revealed very little that was new(ao).
Two similar explosions occurred over South America in the 1930s(ar). However, some are large enough to survive the journey to the surface. Depending on the size, density, speed and angle of approach, the consequences of a large impact are difficult for the average person to appreciate. As Austen Atkinson wrote[109] “A single impact by a rock the size of (London’s) Millennium Dome could devastate the surface of the globe with an explosive release of energy five times more powerful than the entire world’s nuclear arsenal. On 19 May 1996, just such an object came within 280,000 miles of Earth: six hours from a collision. Humankind could have been eradicated.”
The most famous impact is probably that which is known as the Chicxulub Event in the Yucatan took place 66 million years ago and wiped out the dinosaurs. A 2017 update on Chicxulub studies was presented(ap) at the annual meeting of the American Geophysical Union in New Orleans.
A more recent (2019) paper(ae) reports that “excavations in North Dakota reveal fossils of fish and trees that were blasted with rocky, glassy fragments that fell from the sky. The deposits show evidence also of having been swamped with water – the consequence of the colossal sea surge that was generated by the impact.”
The Chicxulub event may have been more complicated than generally thought, as a 2022 report revealed that “researchers have now uncovered another crater off the coast of Guinea that might well be Chicxulub’s cousin. The newly discovered feature, albeit much smaller, is also about 66 million years old. That’s a curious coincidence, and scientists are now wondering whether the two impact structures might be linked. Perhaps Chicxulub and the newly discovered feature—dubbed Nadir crater—formed from the breakup of a parent asteroid or as part of an impact cluster, the team suggested.”(aw)
The Yucatan impact has a rival claimant in the Indian Ocean as the dinosaur killer, known as the Shiva crater. This is claimed as the largest multi-ringed impact crater in the world(an).
11 million years later another impact in the Atlantic is credited with the expansion of the mammals according to a new study by co-author, Dennis Kent from Rutgers University.
An online calculator of impact effects was developed by scientists at Purdue University and Imperial College, London was first published in 2004 and recently updated(g).
By 2009 175 large impact craters have been discovered all over our planet and many more are undiscovered having been destroyed over time by wind and water erosion or hidden by vegetation. In 2006, a crater with a diameter of 30 km was discovered in the Southern Egyptian desert. This discovery may solve a mystery in the same region that has baffled science for over seventy years, namely, the Libyan desert glass that covers an area of 60 x 100 km. However, the largest known impact crater is the Vredefort crater in South Africa with a diameter of 300 km (186 miles). But this may have to take second place to the 300-mile-wide crater identified in Hudson Bay in North America.
The spectacular collision of Comet Shoemaker-Levy with Jupiter in July 1994 and how it disintegrated into a number of huge pieces before impacting over seven days, may offer one possible explanation for the mechanism that could produce the apparent clustering of 3rd millennium BC impacts on Earth.
The current estimate is that there are more than 2,000 asteroids exceeding a kilometre in size together with 10,000 over half a kilometre plus millions of smaller items in Earth-crossing orbits; collectively known as ‘Apollo objects‘. The meteor that exploded over central Russia in February 2013 belonged to this Apollo group. Add to this the risk from comets, normally larger than asteroids, and it is obvious that large-scale impacts are inevitable, however infrequent. The good news is that in 2011 it was reported that a NASA space telescope recorded a 40% reduction in their earlier calculation(j) which should be compared with the assessment referred to(f) at the end of the last paragraph of this entry. May 2012 saw further estimates being published(l).
Terminology, definitions and number estimates are constantly changing. Asteroids that are more than 100m across with orbits that come within 7.5 million km of Earth are now referred to as PHAs (Potentially Hazardous Asteroids). As of June 2014, the IAU has listed 1,466 PHAs, while NASA estimates put the actual total in excess of 4,700(q).
As recently as 1953 an asteroid impact with the Moon was photographed as a flash and only in 2002 was the resulting 2Km- wide crater identified. The estimated energy released by this 300-metre-wide object on impact would have been half a Megaton of TNT (35 times the Hiroshima bomb). A hit of this magnitude on Earth could have wiped out a large city.
It must be kept in mind that the immediate damage caused by the impact itself is only the beginning of the story; tsunamis, volcanic eruptions, and earthquakes together with worldwide long-term dust veils could trigger climate change leading to ongoing adverse effects on vegetation and animal life. For humans, this meant death, destruction, floods, repeated crop failures and probably a breakdown in any existing civil order.
It was as recent as the 1930s that geologists were being told that Meteor Crater in the Arizona desert was the only known evidence that an impact, with worldwide consequences, had ever taken place. The site is also known as Barringer Crater after the family who owns it. Until recently, it held the record for the largest impact crater less than 100,000 years old; it’s about 49,000 to 50,000 years old and measures 0.75 miles (1.2 km) in diameter. That is, until 2019, when the Yilan crater was discovered in China, which measures about 1.15 miles (1.85 km) across and likely formed about 46,000 to 53,000 years ago, based on radiocarbon dating of charcoal and organic lake sediments from the site, the NASA statement says(au).
It was also in the 1930s that the first of the Apollo objects were identified. Since then, the number of large identifiable impact craters grew to hundreds and the number of Apollo objects, whose impact would have global implications, became thousands. It then became obvious that the Earth as we know it is at serious risk. World authorities are slowly realising that the probability of similar impacts in the future is simply inevitable.
Until recently, statistical analysis indicates a major impact every 10,000 years; with the last such event occurring 12,000 years ago possibly destroying Atlantis, directly or indirectly. However, in 2006, this estimate was revised downward to a major collision every 1,000 years with the last impact having taken place around 2800 BC, in the Indian Ocean, where an 18-mile diameter crater has been discovered at a depth of 12,500 feet.
However, a paper(x) published in October 2015 has suggested that a study of mass extinctions over the past 260 million years appears to have taken place every 26 million years coinciding with major asteroid/comet impacts.
So far 175 large impact craters(e) have been discovered all over our planet and many more are undiscovered having been destroyed over time by wind and water erosion or hidden by vegetation. In 2006, a crater with a diameter of 30km was discovered in the southern Egyptian desert. This discovery may solve a mystery in the same region that has baffled science for over seventy years, namely, the Libyan desert glass that covers an area of 60 x 100 km. However, the largest known impact crater is the Vredefort crater n South Africa with a diameter of 300km (186 miles). But this may have to take second place to the 300-mile-wide crater identified in Hudson Bay in North America. A 2015 report tells of two impact zones that total more than 400 kilometres across, which were identified in the Warburton Basin in Central Australia(t).
Although it appears that similar suggestions have been made since the 1950s, the debate has now reached a new level. The Hudson Bay feature has generated even greater interest since Richard Firestone, a nuclear physicist together with Allen West and Simon Warwick-Smith published[110] their claim that it was created around 11,000 BC and had human witnesses who preserved their memory of it in their local folklore and that may have been responsible for the extermination of the Clovis people(ai). Firestone’s tentative 11,000 BC date for this event is earlier than Plato’s even more questionable 9600 BC date for the destruction of Atlantis might be connected since the event described by Firestone & Co. would have had global consequences and could have affected any suggested Atlantis location. In 2007, at a news conference during the Joint Assembly of the American Geophysical Union, in Acapulco, Mexico, two archaeologists from the University of Oregon, Douglas J. Kennett and Jon M. Erlandson added geological evidence to support Firestone’s thesis. In 2008 evidence of an exploding comet/asteroid over Canada during the same period was presented(c) by other academics from the University of Cincinnati. However, it must be noted that the Firestone hypothesis has encountered some criticism since the start of 2009 and must therefore be treated with due caution. This criticism appears to be gaining support according to a May 2011 report(h). In June 2012, James Kennett, son of Douglas Kennet mentioned above, was part of a team that announced further evidence of a major impact event 13,000 years ago extending from Pennsylvania and South Carolina as far as Syria(m).
Dr Reinoud de Jonge has written several articles(d) that drew on petroglyphs in Brittany to support his contention that the Earth had an encounter with a cometary body in 2345 BC. This would appear to complement the work of Mike Baillie and George Dodwell, who echoed William Whiston’s proposed date of 2346 BC, for an encounter with a comet that caused the biblical Deluge.
Since only 30% of our globe’s surface is exposed land, it is reasonable to conclude that 70% of impacts will have landed in water, leaving little lasting evidence. However, at least ten of these identified impact craters occurred after the last Ice Age and at least seven of them date from around the third millennium BC, a period when there were widespread cultural collapses.
In a recent book[111] the renowned dendrochronologist, Mike Baillie, has outlined compelling evidence from his discipline combined with ancient mythologies to support the idea of extraterrestrial impacts in early historical times. May I suggest that the mythologies that possibly relate to multiple impacts are in fact recollections of a comet that had been visible for some time before breaking up under the gravitational influence of our planet before impact? This idea was developed by Baillie in a subsequent book[112] written with Patrick McCafferty that focused on Celtic mythological figures. Comets rather than asteroids are more likely to have contributed to the development of myths since an asteroid would not have been visible long enough for it to develop an identity that would be remembered in legend. Graham Phillips has gone further and proposed[036] that a close encounter with a comet in the middle of the 2nd millennium BC triggered the development of monotheism at that time. Furthermore, he contends that as the Earth passed through this comet’s tail, it introduced large quantities of the amino acid, vasopressin that heightened aggression in humans leading to large-scale conflicts worldwide. This comet, 12P/Pons-Brooks is due for another close encounter with Earth in 2024.
A 2012 paper(o) by Fernando Coimbra investigates the influence of unusual astronomical events, in particular comets, on the subject matter of rock art. An earlier paper(p) by Coimbra looks at the swastika as a specific example of a reflection of such an event.
Mythologies, worldwide, offer evidence of these impacts and have been subsequently reinforced by classical writers who describe in non-scientific terms the effects of these extraterrestrial assaults. Pliny wrote in his Natural History (Book II, sec 91) of ‘A terrible comet was seen by the people of Ethiopia and Egypt, to which Typhon, the king of that period, gave his name; it had a fiery appearance and was twisted like a coil, and it was very grim to behold: it was not really a star so much as what might be called a ball of fire.’
Similarly, the Greek myth of Phaëton has been interpreted as a record of an encounter with a comet. Edith and Alexander Tollmann also identified an 11,000 BC impact with the Köfels region of the Austrian Tyrol as one of the impact zones. The interpretation of ancient legends and myths is a matter of subjective response, but the volume of such evidence is so great that the probability of a number of major impacts being within the memory of man, who relayed the experience down to us through the medium of tradition, is quite high.
The fact that our Earth is continually at risk of a cosmic collision, the physical evidence of recent and past collisions, the recording of impacts on the Moon and Jupiter compounded with stories in ancient mythologies offer strong grounds for accepting the possibility of Atlantis being destroyed as a result of a collision with an extraterrestrial object as a credible working hypothesis.
While an asteroid impact destroying Atlantis is relatively easy to accept, some authors have proposed even more dramatic scenarios where the impact was so great that it caused the Poles to change position and/or the Earth’s outer mantle to move relative to the inner core. There is little doubt that cosmic collisions of all the possible natural catastrophes pose the greatest possible threat to life on Earth. There is an interesting website(c) that discusses both catastrophes and Atlantis. Another site(e) has a small collection of images of impact craters as seen from space. 2010 produced a frightening upward reassessment of the asteroid threat(f).
In 2001, NASA(k) identified 1,000 asteroids and comets orbiting close to Earth that are capable of causing catastrophic damage to our planet in the event of a collision. An interesting map was published(n) in February 2013 showing the locations of 34,513 impacts dating back to 2300 BC.
Recent deliberate encounters with comets and asteroids have produced images and data that have raised questions about the traditional description of comets being composed of ice and rock. The lines between asteroids and comets are becoming increasingly blurred and new definitions are required(r). The trend now is to see asteroids and comets as part of a continuum. Evidence is emerging that the H20 previously associated with comets may have been OH radicals(s).
The 2014 landing on Comet 67P/Churyumov-Gerasimenko would appear to have destroyed the ‘dirty snowball’ description of comets, coined in 1950 by the noted astronomer, Fred Whipple, and should now be abandoned.
Although large asteroids or comets have caused and will again cause global catastrophes on a scale that we can only imagine, they are not the greatest potential threat to our existence. It is estimated that our galaxy, like others, is also home to free-floating giant gas planets untethered to any star, which, if they wandered our way, could not only obliterate our planet but de-stabilise our solar system.(u)
Terry Westerman offers a fascinating overview of possible global impact sites on his fully illustrated website(y).
Fortunately, the death and destruction caused by comets are balanced by the probability that they are also the source of life on our planet. This idea is gaining greater acceptance with a further paper(aa) offering additional supportive evidence published in April 2016.
Nevertheless, improved vigilance is required if we are to believe Peter Brown of the University of Western Ontario, whose research in 2014 concluded(ab) that hazardous asteroids are 10 times more likely to hit Earth than previously thought!
Further Reading: Hoyle[602] , Maguire[604], Verschuur[579], Clube & Napier[290], Allan & Delair[014].
(a) https://web.archive.org/web/20200225130714/http://www.tolos.de/ and https://web.archive.org/web/20190805194450/http://atlis.de/
(b) Wayback Machine (archive.org)
(c) https://www.eurekalert.org/pub_releases/2007-05/uoo-ori052107.php
(d) https://web.archive.org/web/20200128100421/http://barry.warmkessel.com/dejonge.html
(f) https://www.dailymail.co.uk/sciencetech/article-1306555/Our-terrifyingly-crowded-solar-How-asteroids-closing-in.html
(g) https://www.purdue.edu/impactearth
(h) https://www.psmag.com/nature-and-technology/comet-claim-comes-crashing-to-earth-31180
(i) https://science.nasa.gov/science-news/science-at-nasa/2008/30jun_tunguska/ (link broken)
(j) https://www.space.com/13130-dangerous-asteroids-earth-nasa-telescope-results.html
(k) The Probability of Collisions with Earth (archive.org) *
(m) https://www.sciencedaily.com/releases/2012/06/120611193657.htm
(n) Every meteorite fall on earth mapped | News | theguardian.com
(o) https://www.academia.edu/5354586/Rock_art_and_the_memory_of_unusual_astronomical_events
(p) https://www.academia.edu/2951519/The_astronomical_origins_of_the_swastika_motif
(q) BBC Focus Magazine, July 2014, page 67.
(r) Are comets asteroids or asteroids comets? – Thunderbolts Forum (v2.0) (archive.org)
(u) https://aeon.co/essays/could-we-make-our-home-on-a-rogue-planet-without-a-sun
(w) https://www.theverge.com/2015/10/26/9615392/comet-lovejoy-ethyl-alcohol-organic-molecules-life
(x) https://phys.org/news/2015-10-scientists-link-comet-asteroid-showers.html
(y) Seismic Circles (archive.org)
(aa) Archive 2998 | (atlantipedia.ie)
(ab) https://www.popularmechanics.com/space/telescopes/a10236/the-asteroid-threat-visualized-16490560/
(ac) https://www.bbc.com/news/science-environment-37647049
(ad) https://neros.lordbalto.com/ChapterNine.htm
(ae) https://www.bbc.com/news/science-environment-47755275
(af) Ragnarok: The Age of Fire and Gravel | MalagaBay (archive.org)
(ag) https://web.archive.org/web/20200916132547/http://defendgaia.org/bobk/bronze.html
(ah) https://web.archive.org/web/20200203201811/http://defendgaia.org/bobk/bobk.html
(ai) https://www.journals.uchicago.edu/doi/abs/10.1086/656015?journalCode=ca
(aj) https://www.q-mag.org/the-new-final-tunguska-theory.html
(ak) Atlantis, Volume 24, Nos 3/4, April-July, 1971.
(al) https://theunredacted.com/the-tunguska-blast-teslas-death-ray/
(an) https://www.sciencedaily.com/releases/2009/10/091015102246.htm
(ao) Remembering Tunguska: A Mystery Explosion that Baffles The CIA Over a Century Later – The Debrief
(ap) <chicxulub killer meteorite> (q-mag.org)
(aq) http://news.bbc.co.uk/2/hi/science/nature/1628806.stm
(ar) https://www.bibliotecapleyades.net/ciencia/esp_ciencia_tunguska23.htm
(as) Near-Earth Comet Exploded over North America about 1,500 Years Ago | Sci-News.com
(at) Researchers Behind Ice Age Comet Claim Say a Comet Destroyed the Hopewell, Too – JASON COLAVITO
(au) Scientists uncover the largest crater on Earth under 100,000 years old | Live Science
(av) Atlantis – Die Theorie vom Meteoriten-Impakt – Atlantisforschung.de
(aw) https://eos.org/articles/impact-crater-off-the-african-coast-may-be-linked-to-chicxulub
(ax) https://en.wikipedia.org/wiki/Hoba_meteorite
(ay) National Geographic, June 2023 p.102
(bb) (1) Matt Finn: Tunguska Mystery of 1908 | Thunderbolts – YouTube
Andalusia *
Andalusia is the second largest of the seventeen autonomous communities of Spain. It is situated in the south of the country with Seville as its capital, which was earlier known as Spal when occupied by the Phoenicians.
However, there is now evidence that near the town of Orce the remains of the earliest hominids to reach Europe have been discovered. These remains have now been dated to 1.6 million years ago according to a November 2023 article on the BBC website(g).
Andalusia is thought to take its name from the Arabic al-andalus – the land of the Vandals. Joaquin Vallvé Bermejo (1929-2011) was a Spanish historian and Arabist, who wrote; “Arabic texts offering the first mentions of the island of Al-Andalus and the sea of al-Andalus become extraordinarily clear if we substitute these expressions with ‘Atlantis’ or ‘Atlantic’.”[1341]
Andalusia has been identified by a number of investigators as the home of Atlantis. It appears that the earliest proponents of this idea were José Pellicer de Ossau Salas y Tovar and Johannes van Gorp in the 17th century. This view was echoed in the 19th century by the historian Francisco Fernández y Gonzáles and subsequently by his son Juan Fernandez Amador de los Rios in 1919. A decade later Mrs E. M. Whishaw published [053] the results of her extensive investigations in the region, particularly in and around Seville. In 1984, Katherine Folliot endorsed this Andalusian location for Atlantis in her book, Atlantis Revisited [054].
Stavros Papamarinopoulos has added his authoritative voice to the claim for an Andalusian Atlantis in a series of six papers(a) presented to a 2010 International Geological Congress in Patras, Greece. He argues that the Andalusian Plain matches the Plain of Atlantis but Plato clearly describes a plain that was 3,000 stadia long and 2,000 stadia wide and even if the unit of measurement was different, the ratio of length to breadth does not match the Andalusian Plain. Furthermore, Plato describes the mountains to the north of the Plain of Atlantis as being “more numerous, higher and more beautiful” than all others. The Sierra Morena to the north of Andalusia does not fit this description. The Sierra Nevada to the south is rather more impressive, but in that region, the most magnificent is the Atlas Mountains of North Africa. As well as that Plato clearly states (Critias 118b) that the Plain of Atlantis faced south while the Andalusian Plain faces west!
During the same period, the German, Adolf Schulten who also spent many years excavating in the area, was also convinced that evidence for Atlantis was to be found in Andalusia. He identified Atlantis with the legendary Tartessos[055].
Dr Rainer W. Kuhne supports the idea that the invasion of the ‘Sea Peoples’ was linked to the war with Atlantis(f), recorded by the Egyptians and he locates Atlantis in Andalusian southern Spain, placing its capital in the valley of the Guadalquivir, south of Seville. In 2003, Werner Wickboldt, a German teacher, declared that he had examined satellite photos of this region and detected structures that very closely resemble those described by Plato in Atlantis. In June 2004, AntiquityVol. 78 No. 300 published an article(b) by Dr Kuhne highlighting Wickboldt’s interpretation of the satellite photos of the area. This article was widely quoted throughout the world’s press. Their chosen site, the Doñana Marshes were linked with Atlantis over 400 years ago by José Pellicer. Kühne also offers additional information on the background to the excavation(e).
However, excavations on the ground revealed that the features identified by Wickboldt were smaller than anticipated and were from the Muslim Period. Local archaeologists have been working on the site for years until renowned self-publicist Richard Freund arrived on the scene, and spent less than a week there, but subsequently ‘allowed’ the media to describe him as leading the excavations.
Although most attention has been focused on the western end of the region, a 2015 theory(d) from Sandra Fernandez places Atlantis in the eastern province of Almeria.
Georgeos Diaz-Montexano has pointed out that Arab commentators referred to Andalus (Andalusia) north of Morocco as being home to a city covered with golden brass.
Quite a number of modern Spanish authors have opted for Andalusia as the home of Atlantis, such as G.C. Aethelman.
Karl Jürgen Hepke has an interesting website(c) where he voices his support for the idea of two Atlantises (see Lewis Spence) one in the Atlantic and the other in Andalusia.
(a) https://www.researchgate.net/search?q=ATLANTIS%20IN%20SPAIN%20I
(b) See Archive 3135
(c) http://web.archive.org/web/20191227133950/http://www.tolos.de/santorin.e.html
(d) https://atlantesdehoy.wordpress.com/2015/08/06/hola-mundo/
(e) The Archaeological Search for Tartessos-Tarshish-Atlantis – Mysteria3000 (archive.org)
(f) Lehrstuhl für theoretische Physik II (archive.org) *
(g) https://www.bbc.com/travel/article/20231114-orce-spain-the-site-of-europes-earliest-settlers